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COMMENT 

Two-fluid picture of the SK model of a spin glass 

M Gabay and T Gareli 
Laboratoire de Physique des Solidest, Universite Paris-Sud, Centre d’Orsay, 91405 Orsay, 
France 

Received 26 May 1981 

Abstract. We show how the known properties of the SK model of a spin glass fit naturally 
into a two-fluid description. The normal fluid is responsible for thermal excitations, 
whereas the condensed part yields a temperature independent zero field susceptibility at all 
temperatures below T,. The relevance of the overblocking effect to the SK model is also 
pointed out. 

1. Introduction 

The Sherrington-Kirkpatrick (SK) model of a spin glass is defined by (Sherrington and 
Kirkpatrick 1975) the Hamiltonian 

where Si is an m-dimensional (classical) unit vector, H is the magnetic field (parallel to 
the 1 direction) and the couplings {Jij} between any pair of sites ( i ,  j )  are independent 
quenched random variables, with probability distribution 

where the N factors ensure a proper thermodynamic limit when one tries to calculate 
the quenched free energy: 

F = - T n p (J i i )  dJij In Z{Jii} I (i i)  

Z{Ji i}  = Tr exp(-P%’). 
{SI}  

The rest of the paper will deal, if not otherwise specified, with the ‘pure’ Ising case 
(m = 1, Jo = 0). In this case, one can briefly summarise what has become progressively 
‘clear’ since the initial paper (Sherrington and Kirkpatrick 1975): 

(i) There is a phase transition at T, = J. 
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(ii) Linear response theory fails in the low-field, low-temperature part of the phase 
diagram (Bray and Moore 1980, Parisi 1980 c). 

(iii) The phase transition does not belong to the instability (or Landau) type of 
phase transitions (De Gennes 1975). 

In this note, we focus our attention on the low-temperature properties of the spin 
glass phase. We first recall what is known or conjectured in § 2. In § 3, we shall study 
systems with inhomogeneous ground states where frustration and/or demagnetising 
effects play an important role; we shall in particular stress the importance of the 
overblocking effect in fully frustrated lattices. In 0 4, we interpret spin glass behaviour 
as that of a two-fluid model, the normal part being blocked (or frustrated) and the 
condensed part being overblocked. 

2. Summary of previous results (m = 1, Jo = 0) 

Two main routes have been explored in the SK problem: 
(i) Replicas (Edwards and Anderson 1975). 

(ii) TAP equations (Thouless er a1 1977). 
Both have their drawbacks and gave misleading results in the past. What is now 

clear, or at least plausible, is that a conventional order parameter, such as the Edwards 
and Anderson (EA) order parameter, is not enough to describe the spin glass transition. 
The TAP equations extremise the free energy with respect to N variables mi(mi = (Si)=, 
where ( , . . )T denotes thermal averaging). Within the framework of the Blandin-Parisi 
scheme (Blandin 1978, Parisi 1979, 1980a, b, c), the replica approach yields two 
solutions; one is the SK solution and the other introduces, as an order parameter, a 
function q ( x )  such as the one depicted on figure 1. Close to T,, Parisi’s solution has been 
shown to be marginally stable (Thouless er a1 1980). 

X 

Figure 1. Parisi’s order parameter ( H  = 0, T G  7‘J. 

In a magnetic field, the (H, T )  plane is divided in two parts by a critical line Hc( T )  
(De Almeida and Thouless 1978). For H > Hc( T ) ,  one only obtains the SK solution. 
The Parisi-Toulouse (1980) hypothesis assumes that below Hc( T ) ,  considered as a 
second-order line, thermal and magnetic properties are decoupled (failure of linear 
response theory). In short, it seems that the magnetic field H acts on the (0 < x < 2) part 
of q ( x )  (figure l), whereas thermal fluctuations are connected with the (2 < x < 1) part. 
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This fact is consistent with the expression of the zero field magnetic susceptibility ,y 

since for T small 

1-q,*,-T2 ( 5 )  

f = $  at T = 0. (6) 

and studies of the Parisi-Toulouse conjecture (Vannimenus et a1 1981) lead to 

(Note however that (6) raises the question of a first-order transition across the 
De Almeida-Thouless curve, a result that has been derived in another context 
(Sommers 1979).) 

The physical picture we shall present below makes use of the overblocking effect for 
fully frustrated lattices, and of the intermediate state in magnetism and superconduc- 
tivity, which we now consider. 

3. Systems with inhomogeneous ground states 

3.1. The overblocking effect 

Fully frustrated systems (FFS) have been investigated in the literature (Alexander and 
Pincus 1980, Derrida et a1 1979). An interesting result for these systems is the 
overblocking effect (figure 2): it states that one cannot always construct a ground state 
of a FFS such that all plaquettes are in their minimal energy state. This geometrical 
effect takes place for space dimension d > 4 ;  it comes about because one imposes the 
constraint of having all plaquettes frustrated and therefore affects Ising as well as 
vectorial spins. When d goes to infinity, the ground state has an equal number of 
blocked (or frustrated) plaquettes (figure 2 ( a ) )  and of overblocked plaquettes (figure 
2 ( b ) ) .  

Figure 2. Ising triangular antiferromagnet. The energy per spin is: (a ) ,  - f i J i ;  ( b ) ,  +lJi. 

3.2. Intermediate state in magnetism and superconductivity 

We shall not attempt to give a thorough description of such systems, but recall that, in 
some situations, the existence of a demagnetising field gives rise to a nucleation phase 
transition (De Gennes 1975). Most often, the demagnetising field stems from finite size 
(or surface) effects, and may induce an instability against the creation of walls. These 
effects depend on the geometry of the sample. 
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As long as the external field H is less than a critical value H,, a magnetic system (e.g. 
of spherical shape) will have a complicated structure of domains and walls. In a simple 
approximation, its properties can be decomposed into two parts. 

(i) Thermal properties are essentially associated with domains; their magnetisation 
and entropy per spin depend upon temperature T but not upon H. Also, for H s H,, 
linear response holds, so that their magnetic susceptibility goes to zero as T + 0. 

(ii) Magnetic properties are linked with the walls: as H increases they progressively 
disappear so that when H = H, the system behaves as a single domain. For H s H,, the 
overall zero field susceptibility of the system is a geometrical constant, independent of 
T ;  thus globally, linear response is broken. Besides, these walls cause the total 
ground-state energy per spin to assume a higher value than that obtained in the absence 
of demagnetising effects (where one would have only one domain for H = 0). On the 
whole, the free energy is a separable function of T and H. 

A theoretical description of such a mixed state is by no means trivial: to represent a 
spatially inhomogeneous magnetic structure would in principle require an underlying 
lattice. Now, on the level of mean field theory, surface effects are missing. Thus one 
obtains a description of single domains where all sites are equivalent. However, there 
might be a way out of that problem: one could introduce a variable y representing the 
probability that a site belongs to a domain or a wall to which a given magnetisation lying 
in the interval (0, m ( y ) )  is associated. Within mean field theory, one would therefore 
recover the characteristics of the inhomogeneities through a probability distribution. 

A similar analysis can be performed for superconducting (type I) systems, where one 
gets the intermediate state (Landau 1943). (We are not concerned with type I1 
superconductors where the wall energy is a priori negative.) 

No mean field theory, if any, has been proposed for such systems which display an 
intrinsic breakdown of linear response theory with: (i) a normal part (up and down 
domains; normal regions), (ii) a condensed part (walls; superconducting regions). These 
two parts are responsible respectively for thermal and magnetic properties. In both 
cases, the local field in the normal part sticks to the value Hc( T ) ,  to which corresponds a 
value Mc( T )  of the magnetisation. 

4. Interpretation of the spin glass phase: a two-fluid model 

Usually, the demagnetising effects disappear when the thermodynamic limit is consi- 
dered. This is not the case for fully frustrated systems or the SK model, where the 
Onsager field plays a crucial role (Thouless et a1 1977). Even though plaquettes are 
difficult to define in the (infinite range) SK model, it is natural to assume that 
overblocking takes place. Its role is lessened by thermal fluctuations and is of relatively 
minor importance close to T,. 

Equation (4) is also suggestive of a two-fluid model introduced in the context of 
superfluidity (Landau and Lifchitz 1969). In that picture, a fraction 2 ( T )  of the spins 
has condensed, and a fraction 1 - 2 ( T )  remains normal (see figure 1). The identification 
of the condensed part with the overblocked plaquettes seems corroborated by the fact 
that a(0)  = 4 (see 9 3.1). This condensed state spans all x(0 < x < Z), so that x appears in 
the light of 9 3.2, as the probability that a given spin has an EA order parameter lying in 
the interval (0, q ( x ) ) .  With tongue in cheek, one can say that at T = 0, a given spin has a 
one-in-two chance of belonging to a domain (normal) or a to a wall (condensed). As a 
matter of fact, the overblocking effect enables us to define what a wall can be in such 
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systems. Moreover, at low temperatures, the width of a wall cannot be neglected 
relative to the domain size (the structure is thus very ramified). With such an 
interpretation, the SK solution can be viewed as a solution without walls (frustrated 
single domain). This idea of a wall can be extended to amorphous materials where one 
similarly expects soft regions responsible for the low-stress response. 

5. Conclusion 

We have presented an interpretation of Parisi’s order parameter reflecting the presence 
of walls or overblocked regions a natural consequence is to view a spin glass as a 
two-fluid system. The overblocking effect provides a natural explanation for the 
freezing of the magnetisation in the impure (.To # 0) Ising case, when one reaches the 
ferromagnetic-mixed phase boundary (Toulouse 1980). If our picture is correct at all, 
an interesting byproduct of Parisi’s theory could be to provide a description, within the 
framework of mean field theory, of nucleation phase transitions. 
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